

Principles of Composting

Will Bakx <u>www.sonomacompost.com</u> willbakx@sonomacompost.com

What is Composting ?

Simple definition: <u>Managed Decomposition</u>

- Composting is a natural form of recycling, which continually occurs in nature. Decomposition is how nutrients are recycled in an ecosystem.
- This natural decomposition can be refined by **managing** ideal conditions.

More on the definition...

- Composting is the <u>biological</u> <u>transformation</u> of organic material through decomposition into a soillike material called compost.
 - When a plant dies, its remains are attacked by microorganisms and invertebrates in the soil, and it is decomposed into humus*.
- The end products of the process are soil-enriching compost (humus), carbon dioxide, water, and heat.
- We will be focused on **aerobic** composting

^{*} The theory that a 'humification' process created 'humus' predates a sophisticated understanding of soils. Products of a humification process have not been observed in soil. Although 'humification' theory is unsupported by evidence, "the underlying theory persists in the contemporary literature, including current textbooks."Lehmann, J.; Kleber, M. (2015-12-03)

Why Compost?

Reduces MSW/Ag Bi-product Management
 Yard and food waste makes up approximately 30-40% of waste stream in US

- Nutrient Rich Soil Amendment
- Soil Improvement/Soil Health
- Disease Prevention/Suppression
- Carbon Sequestration/Impact on Global Warming

Biological Process

 Carbon Nitrogen •Water • Air •Time

Guidelines for making compost:

- Use a variety of raw materials (such as leaves, prunings, food scraps, manure, sawdust, etc..)
 - Greens = nitrogen materials
 - **Browns = carbon materials**
 - What <u>NOT</u> to compost and why ?
- <u>It's important to keep compost aerobic</u> (turn it!)

• It must stay heated to <u>131° F for at least 15 days</u> and be <u>turned 5 times</u> during that process.

Browns ... and ... Greens

CARBON

Food

- Use a variety of ingredients: leaves, grass, weeds, prunings, vegetative food scraps, manure...
- Right particle size <2" preferred
- .5 to 1.5 inches most rapid
- <u>Do not use</u>:
- Meat, bones, dairy, fats
- Soil
- Stubborn weeds: Bermuda grass
- Poison Oak
- Cat and dog (carnivorous) feces
- Diseased plant material

Food Cont'd

- Compostable Plastics
- Allelopathic plant material Ok
- Ash Dusting
- Plants with pesticides Mostly Ok
- Fertilizer Ok
- Egg shells Ok
- Coffee Grounds Ok
- Others??? Ask away

Bins or Open, Freestanding

Green Mountain Technologies

1-2-3 Rollover

Water as Needed !

Moisture by Feel

- Handful of material
- Squeeze firmly
- Water escapes: > 60 %
- Shiny ball: 55% 60 %
- Ball remains when tapped: 50 55 %
- Ball falls apart when tapped: 45 50 %
- No ball forms: 40 45 %
- Unless hand feels talky dry: < 40 %

٩.,

Appendix 1: Compost Food Web

Appendix 1

36 | Unit 1.7 Making and Using Compost

TROUBLE-SHOOTING

 Pile not heating up / low pile temperature
 Below 90 F

High pile temperature
Above 163 F

Pile smells like rotten eggs
Pile smells strongly of ammonia
Pile is attracting pests and flies

Monitor the Temperature

Monitoring the Compost Pile Temperature

April 22 = 165 F April 25 = 150 F April 29 = 135 F April 22 = 138 F April 25 = 135 F April 29 = 115 F

This is not Indore (sir Albert Howard)

THE PRESS DEMOCRAT . WEDNESDAY, NOVEMBER 24, 2010

LOS ANGELES

Indoor compost pile ignites house

A 1,700-plant marijuana grow house in the San Gabriel area erupted in flames when a living room compost pile ignited Monday.

Detective David Mertens said a man was seen running from the home but there are no arrests. Mertens says gangs rent out homes to raise pot and investigators find a couple of similar marijuana grow houses each month.

Temperature/Turning Chart

Start	Dat	te:	2-2	5-1	1		N	Vind	drow	w:	Spr	ing	Ha	rve	st							
F/Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	75	76	77
>170	2.2	120			1,2	· · · · ·	1. The			T	. · · · · · ·			1 mm	ST		an s		- L			
170	-	1 1	1 1	2	1 - 1				1.1				11.11	1.1.1		100.00			71.11			
168	1		0.51	1				-	0.11				0.00			0.0			24.11			1.1
166	100.0		0.01					-	0.0		0.181		21.1		9	1.1			2011			1.1
164	1.1							-					1.0		1	1.2			26.18			
162				1.4.1				-		1			1			1			10.1		51.1	1.1.1
160				1.1				1.1		2			1	1. 11	1				24.1			1.1
158	100			1.5				1			1.1		1	1,2		1	1				1	1.1.1
156				2	1		1	2		1	1.2		2	1.00	1	2	1.1		77			
154				1	2		1.2						11.1			-	2		2		51.1	1.1.1
152				1	1.0	1			1.1		-	2			1				1			1
150	100		-	1.1.1		1		-	2			1						1.00	100			
148	1.1		1.2	-		-		-	1						2		-	1,2	100			
146	1					2			1.1			1	1						1.1	1,2		
144	1															-	-	-	201			
142		1						-											1.1	1 1		
140	1			-	-	1		-				-			1	1			2.1	-	2	
138	T.	1	6 L .					-	10.0	1			100							-		
136	T I							1											24		1	1
134	-	2																	N 1			
132	-				· · · · ·	·	1	÷					· · · · · ·					·				1
130	-		·	-	·	-	·		· · · · · · · · · ·		·	·	· · · · · · · · · · · · · · · · · · ·			·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·	1	1
128	1	1		1.1.1	-			÷			-		-				-		1.1			2
126				111				-											10.0		5	1
124	-	-						-		-	2	-			-	-	-	-	1.1	-	-	
122	2	1	2					-											1.1			
120		2						-											1.1			
118	1		1	1															N 8			
116	1			-							-				-		-		1.1	-		
114		1						-					-					-	10.1		5	
112																	1		P			
110	1			111								-							R			
108	-	-		-				-		-	-		-	-	-		-		M		-	
106	1	-						-	-				-				-	-			-	
104	-	-		-				-	-	-	-		-		-		-	-			-	
102		-						-							-							
<102	-	-						-				1.00							1			-
Turn		· · · · ·	Sec. 11	1	· · · · ·	X	100.00		X	-	1.1.1	X	10.01		X	-	· · · · ·	X			X	

How to choose your compost

- Earthy smell
- Lost identity of original material
- Stains fingers black when rubbed
- pH < 8.0
- C:N ratio < 20, <17 preferred
- Stability
- Maturity

Stability

Stability an expression of microbial activity; How complete is the composting process.

- Measured by respirometry
 - Carbon Dioxide Evolution (CO₂)
 - Oxygen Uptake (O₂)
 - Dewar (Self-heating test)
 - Solvita (CO₂ and NH₃)

 A compost must be stable before maturity can be assessed

Maturity

Maturity an expression of how well the compost is cured.

- Use bioassays (best indicator)
 - Cucumber seedling emergence and vigor
- Other
 - NH₄₊ to NO₃ ratio Lower number is better
 - pH <8.0
 - C/N ratio < 20:1

Ask For a Lab Test

ANALYTICAL CHEMISTS and BACTERICO.OGISTS Approved by Statle of California SOIL CONTROL LAB TEL: 831-724-5422 FAX: 831-724-3188 www.compostlab.com

Account #: 5060398-1/1-6811 Group: Jun,15 B #31 Reporting Date: July 2, 2015

Sonoma Compost Co. 550 Meacham Road Petaluma, CA 94952 Attn: Will Bakx

 Date Received:
 11 Jun. 15

 Sample Identification:
 OHTBD,SF:Jun15

 Sample ID #:
 5060398 - 1/1

Nutrients-Primary + Secondary	Units	Wet wt. Basis	Dry wt. Basis	Method
Total Nitrogen:	%	1.4	2.3	4.02-D
Ammonia (NH ₄ -N):	mg/kg	20	31	4.02-C
Nitrate (NO ₃ -N):	mg/kg	1300	2100	4.02-B
Organic Nitrogen (OrgN):	%	1.3	2.1	Calc.
Phosphorus (as P2O5):	%	0.45	0.70	Calc.
Phosphorus (P):	mg/kg	2000	3100	4.03-A
Potassium (as K ₂ O):	%	0.69	1.1	Calc.
Potassium (K):	mg/kg	5700	9100	4.04-A
Calcium (Ca):	%	1.3	2.1	4.05
Magnesium (Mg):	%	0.38	0.60	4.05
Sulfate (SO ₄):	mg/kg	1000	1600	4.12-D/IC
Nutrients - Trace elements				
Copper (Cu):	mg/kg	33	52	4.05-Cu
Zinc (Zn):	mg/kg	91	140	4.05-Zn
Iron (Fe):	mg/kg	8300	13000	4.05-Fe
Manganese (Mn):	mg/kg	230	360	4.05-Mn
Boron (B):	mg/kg	22	34	4.05-B
Salts, pH, Bulk Density, Carbonates				
Sodium (Na):	%	0.056	0.088	4.05-Na
Chloride (CI):	%	0.09	0.14	04.05/IC
pH Value:	units	6.25	NA	04.11-A
Electrical Conductivity (EC5 dw):	mmhos/cm	NA	6.4	04.10-A
Bulk Density :	lb/cu ft	41	26	SCL
Carbonates (as CaCO ₃) :	lb/ton	4.2	6.6	04.08-A
Organic Matter:	%	27.1	42.8	05.07-A
Organic Carbon:	%	15	24	4.01
Ash:	%	36.2	57.2	3.02
C/N Ratio	ratio	10.4	10.4	calc.
Moisture:	%	36.8	0	3.09
AgIndex	ratio	> 10	> 10	SCL

To Calculate lbs/ton: (%Nutrient) x (20)

To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20) To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27

To Calculate Ibs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27

Compost

Mulch

- In the Soil/**On Top**
- Supplies Nutrients
- Directly Improves Soil Structure
- Conserves Water
- Improves CEC
- Some Erosion Control

- On Top of the Soil
- Zero Nutrient Input
- Slow Soil Structure Improvement
- Conserves Water
- No CEC Change
- Reduced Erosion

Mulches

- Aesthetics
- pH
- Coarse to last, resist blowing away
- High C for weed suppression, aggregation
- Water conservation
- Temperature moderation
- Slowly build soil
- Lazy soil preparation (fall)

Thank you Questions?

HETP MILLIN VANNY MANE P.D. Dec (130 America CA 5454) fab. p.3.567 1843 www.michine.committee

Will Bakx willbakx@sonomacompost.com www.sonomacompost.com 707 664 9113

Handouts: https://www.dropbox.com/sh/u5qabw7qtjvmfgo/AACwYIPTQPDvsAbkghScQhbpa?dl=0